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1 Numerical simulation
The propagation of the optical-field envelopes  and  inside the fiber is governed by the coupled Ginzburg–Landau equations. In a time frame moving with the group velocity of the signal, the coupled Ginzburg–Landau equations can be expressed as follows: 
,	                     (1)
      	            (2)
Here,  and  are the slowly varying amplitudes of the pulse along the x and y directions, respectively;  the propagation coordinate; and   the time-delay parameter. and  are the group velocity dispersion (GVD) and third-order dispersion (TOD), respectively. The propagation-constant difference is defined by
	,                                                                                   (3)
where  and are, respectively, the refractive indices in the x and y directions and  is the central wavelength. The gain coefficient is given in the frequency domain by
	,                                                                        (4)
where  is the small signal gain coefficient,  the intracavity pulse energy,  the gain saturation energy,  the central angular frequency, and  the gain bandwidth. The intracavity pulse energy is given by 
	.                                                                     (5)
The nonlinearity parameter is given by
	                                                                                       (6)
where  is the Kerr coefficient,  the speed of light, and  the effective mode area in the fiber. 
[bookmark: _GoBack]The parameters used in the numerical simulation agree with the experimental conditions. The following parameters were used: for the ZBLAN fiber, a fiber length of 2.3 m, fiber core diameter of 16.5 m, NA of 0.12, small signal gain of 8 m-1, gain saturation energy of 1.15 nJ, gain bandwidth of 120 nm, central wavelength of 2.78 m, propagation-constant difference of 0.72, GVD of 83 fs2/mm, TOD of 476 fs3/mm, and Kerr coefficient of 2.110-20 m2/W [18, 22]; for the Ge rod, a length of 6 cm, GVD of 1685 fs2/mm, and TOD of 3376 fs3/mm [19]; and an OC transmittance of 40%. By choosing suitable waveplate orientations, stable mode-locking is achieved in the numerical simulation, and the results are shown in Fig. 5. 
2 Supplementary experimental results for positive net intracavity dispersion
While the net intracavity dispersion was positive, the mode-locked Er:ZBLAN fiber laser produced picosecond pulses. For example, with the use of a 20-cm Ge rod to compensate for the anomalous dispersion of a 3.0-m-long Er:ZBLAN fiber at a net intracavity dispersion of 0.087 ps2, the laser generated 1.78-ps pulses with a spectral bandwidth of 18 nm, as shown in Fig. 1S. 
[image: ]
Fig. 1S (a) Autocorrelation trace and (b) spectrum of mode-locked pulses from an Er:ZBLAN fiber laser when the net intracavity dispersion was 0.087 ps2. 
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